PATHOPHYSIOLOGY OF COMMON RESPIRATORY DISORDERS

Lois E Brenneman, MSN, ANP, FNP, C

RESPIRATORY INFECTIONS

INFLUENZA

- Influenza remains in top 10 causes of death in US.
- 90% in persons > 65 years (10,000-40,000 deaths per year).

PATHOPHYSIOLOGY:

- Viral etiology cold, dry weather (and crowding) favors spread
- Virus replicates exponentially wi respiratory tract. (abrupt onset within 24-48h)
- Influenzae can be lethal victims contract pneumonia esp elderly or frail
- Widespread lethality in epidemics at turn of century
- Peak flu season: December March

S/S:

- Sore throat; dry nonproductive cough; high fevers with chills
- Severe, diffuse myalgias; headache
- Elderly esp in nursing home present confusing picture concomitant COPD.

IMMUNIZATION

- CDC indicates that not once in past 10 years has even 1/3 population at risk been immunized.
- Virus is killed cannot transmit influenzae safe for immunocompromised persons
- Vaccine must be reformulated yearly can not readminister previous year's vaccine
 - Influenza A has more frequent major and minor structural changes
 - Each years vaccine must be reformulated according to strains which were prevalent in
 - May, June and July which usually represent the follow winter's most likely strains.
- Requires immunization prior to outbreak in community. (Oct or Nov)
 - Too early immunization will result in vulnerability in late winter early spring
 - Too late immunization will result in no protection during late fall early winter
 - Immunity gradually wanes therefore mid-November is ideal but October is reasonable

UPPER RESPIRATORY INFECTION (URI)

- Common cold of viral etiology; 30% pharyngitis chlamydial; 5-10% mycoplasma and group A strep.
- <u>Rhinoviruses</u> most common: 110 antigenic serotypes; no cross immunity; reinfection w another serotype right after a recent cold is common.

TRANSMISSION:

- Aerosolization of virus-laden respiratory secretions and direct mucus membrane contact
- Contaminated hands, skin surfaces, counter tops, etc.
- Similar clinical picture with numerous viral agents:
 - Rhinovirus, respiratory syncytial virus
 - Adenovirus, influenza virus, parainfluenza virus.

PATHOPHYSIOLOGY:

- Incubation 1-5 days, virus shedding to 2 weeks.
- S/S:
- Coryza, pharyngitis, laryngitis, H/A, malaise, fever
- Ear/sinus discomfort secondary to mucosal edema vs acute viral infection
- Resolve wi 1 week, symptoms may linger several weeks
- Rarely progress into pneumonia.

PREVENTION:

- Avoid aerosol exposure
- Wash hands, avoid hand contact with oral/nasal/ocular mucus membranes.
- Gargling w antiseptic not effective
- Inhaled alpha-interferon experimental
- High-dose Vitamin C or zinc lozenges not demonstrated in controlled studies

COUGH

- Number one cause of visits to primary care providers.
- Generally seek medical attention for cough out of fear of underlying problems or presence of
- secondary symptoms (insomnia, exhaustion, hoarseness, dizziness).
- 1994: 53 million Rx for cough; \$526 million to relieve symptoms.

PATHOPHYSIOLOGY:

- Defense mech to expel foreign bodies, secretions, inhaled irritants.
- Voluntary component; involuntary component,
- Vagally mediated (efferent and afferent pathways of NS)
- Sequence of Coughing

Stimulus \rightarrow stimulate medulla to initiate deep inspiration \rightarrow glottic closure via laryngeal nerve \rightarrow relaxation diaphragm and contraction of intercostal and abdominal muscles \rightarrow thoracic pressure increases \rightarrow glottis reopens \rightarrow air/foreign material expelled.

- Sometimes cough may serve no useful purpose and debilitate patient and family.

DIFFERENTIAL DIAGNOSIS:

INFECTIOUS ETIOLOGY

- Symptoms which suggest infectious cause of cough:
 - Rhinitis, sinusitis, pharyngitis, otitis, headache
 - Myalgia, fever, pleuritic chest pain.
- PND may coexist with other causative factors for cough
- Respiratory infection, pneumonia, bronchitis, TB, non-infective cough-inducing conditions
- Viral cough: noisy and prod minimal sputum
- Bacterial/mycoplasma: severe and can last months after other symptoms disappear.

NON-INFECTIOUS ETIOLOGY:

Asthma, environmental allergies, inhaled agents, tumors, congestive heart failure, pulmonary edema, chronic bronchitis, granulomatous disease, GERD.

Cough equivalent asthma

- Cause may be only symptom of asthma; especially if cough worsens at night.

- Determine if cough is exacerbated by exercise or exposure to allergens (dust, pollen, pets, mold)

Foreign body aspiration:

Cough w wheezing or stridor may suggest foreign body aspiration especially in very young and elderly.

Post viral bronchospasm:

Prolonged duration cough after cold/flu suggests chronic bronchitis (esp if smoke) or post viral bronchospasm

Cancer:

Smoker w change in persistent cough: suspect CA (persistent dry cough no other symptoms may be caused by malignancy which irritates the cough receptors in lungs, trachea or mediastinal structures)

<u>GERD:</u> increasingly recognized cause of cough: sour taste, retrosternal burning.

Productive vs nonproductive cough:

- Non-productive re sputa: asthma, GERD, allergies.
- Productive: infection; COPD, pulmonary edema (frothy pink/white)

ACUTE BRONCHITIS

EPIDEMIOLOGY ACUTE BRONCHITIS (AB)

- One of most freq dx in primary care
- 7 million episodes annually among non-institutionalized adults 4 per 100
- RX antibiotics 50-70% of time 16 million RX outpatients

DEFINITION AND DIAGNOSIS

- No universally accepted definition exists
- Diagnosis is a function of history and physical
- Transient inflammation of tracheobronchial tree
- No pathologic diagnostic gold standard
- Majority of causative agents self-limiting and non-treatment

- Hallmark is productive cough

- Etiology: usually infectious
- Non-infectious causes:
 - Toxins
 - Irritants
 - Noxious fumes
 - Secondary to certain drugs e.g. ACE inhibitors
- From clinicians perspective most important distinction is to R/O pneumonia
- Sinusitis may be confused w bronchitis
 - Both prod productive cough
 - Can co-exist w bronchitis
- Abnormal lung sounds (except stridor) localizes process to below carina
- Normal lung findings does not r/o acute bronchitis no gold standard for dx

CAUSES: <u>little known re etiology.</u> - viral, bacterial, toxins

- Viruses (most common cause of acute bronchitis)
- Bordetella pertussis:
 - Recent evidence for chronic cough adults
 - Minority of cases of AB
- Mycoplasma pneumoniae: widespread common
 - Less common cause than viral
 - Very common with shared quarters: dorms, barracks, etc.
- Chlamydia pneumoniae: newly ID pathogen
- Classic pathogens of pyogenic pneumonia : uncertain as to what extent they cause AB
 - Streptococcus pneumoniae
 - Haemophilus influenzae
- Non-infectious irritants
- Misdiagnosed asthma: rhonchi can be present vs wheezes

© 2001 Lois E. Brenneman, MSN, CS, ANP, FNP all rights reserved – www.npceu.com VIRUSES CAUSING BRONCHITIS

- Influenza A and B
- Adenovirus
- Parainfluenza virus
- Coronavirus
- Respiratory Syncytial virus
- Coxsackie virus A21
- Miscellaneous (measles, rubella, etc.)

Illustrations: LifeART William and Wilkins

PATHOPHYSIOLOGY

- Decent into lower respiratory tract (LRT) of virus or other organism
 - Causes epithelial inflammation
 - Irritation of cough receptors
- Injury to mucus membranes lining tracheobronchial tree
 - Triggers complex series <u>cellular/molecular events</u>
 - Hyperemia and inflammation of bronchus
 - Infiltration of mucosa w leukocytes
 - Secretion of mucopurulent exudates
 - Ciliated cells usually damaged
 - Phagocyte and lymphocyte function impaired
 - Results:
 - Decreased host defenses
 - Bacteria cross mucosa cause further damage

CLUES IN HISTORY AND PHYSICAL

HISTORY

- How long has episode coughing persisted?
- Out of work/school or had high fever?
- Was cough preceded by URI?
- Did it begin abruptly without antecedent symptoms?
- Underlying chronic respiratory condition?
- If productive, what is color/nature of sputa?

PHYSICAL EXAM

- White or mucoid sputum suggests bacterial etiology
- Colored sputa or fever suggests bacterial superinfection specialists
- doubt such is common
- Transition from productive to dry, hacking cough
- Hacking cough suggests hyperactive airways not necessarily infective process
- Symptoms typical of acute bronchitis
 - Cough, sputum production, low-grade fever
 - Sometimes wheezes and diffuse rhonchi
- Focal findings are absent which distinguishes acute bronchitis from pneumonia

WHEN TO ORDER TESTING

- <u>CXR:</u> matter of judgement based on history
- Rarely necessary if history of URI with sore throat or coryza
- Probably unnecessary unless focal findings
- CXR is advisable when
 - Signs or symptoms persist more than 2 weeks
 - Another aspect of history or PE suggests pneumonia
 - High fever, focal findings
 - Profound dyspnea
 - Co-morbid medical disorders vs a healthy patient

© 2001 Lois E. Brenneman, MSN, CS, ANP, FNP all rights reserved – www.npceu.com

Above: Bronchus histology Below:: Secretions in bronchioles

Illustrations: LifeART William and Wilkins

- Usefulness of gram stain is debated
 - Uninformative in most patients with acute bronchitis
 - Contaminated with oral secretions
 - Some feel that it identifies predominant organism to guide treatment
 - Particularly useless in children
 - Most can't produce sputa specimen
 - Throat culture rarely informative re: cough
- WBC and differential offer little useful info

LIKELY PATHOGENS

- Current trend is away from antibiotic treatment in pt with AB
 - Even those with bacterial infections
 - Importance of ID etiologic agent is diminishing with current thinking
- Typical pathogens
 - Viruses most common cause
 - Streptococcus pneumoniae extent not known
 - <u>Haemophilus influenzae</u> extent not known
 - Atypical organisms
 - Chlamydia pneumoniae, Mycoplasma pneumoniae
 - Common in general pop esp younger pts
 - Many mild/asymptomatic; can be more serious
 - Associated with bronchial obstruction and wheezing
 - Can precipitate asthmatic bronchitis or adult-onset asthma
 - Bordetella pertussis: cough with whooping or vomiting
 - Increasing in children and elderly
 - Younger adults more frequently than previously realized

PNEUMONIA

DEFINITION:

- Inflammation of peripheral lung and terminal airways
- Usually due to infection
- Classified re: site, etiology, host, clinical course

EPIDEMIOLOGY

- 6th leading cause of death in US
- One of leading causes of infection-related mortality
- Affects 4 million people annually
- 50 yrs ago: all cases were <u>S. pneumoniae</u>
- Today only 25% cases S. pneumoniae
- Empiric therapy
 - Usually successful but most make choice judiciously
 - Factors: age, living conditions, gen health, season, local resistance patterns

PATHOPHYSIOLOGY:

- Colonization of oropharynx followed by aspiration of organism into lower airway
- Host defense vs virulence of pathogen determine whether develop pneumonia
- Greater virulence and greater quantity of organism the more likely to be pathogenic
- Host defenses
 - Tissue macrophages
 - White cells, granulocytes
 - Cilia in mucociliary tract

- Glottis (UR tract) prevents aspiration large volume fluids

- Modes of transmission
 - Most due to aspiration of nasopharyngeal flora
 - Also via infected aerosols: influenza, TB, RSV
 - <u>Hematogenous seeding</u> of lung <u>usually S. aureus</u>
- Conditions which increase risk
 - Airway obstruction
 - Decreases mucociliary transport
 - Increases alveolar hypoxia
 - Altered consciousness incr risk aspiration: CVA,
 - ETOH abuse, seizure
 - Compromised immune system
 - Impaired phagocytosis, opsonization
 - HIV, CA chemotherapy,
 - hypogammaglobulinemia
 - Recent viral infection
 - Enhance mucosal adherence of bacteria
 - Impair mucociliary transport

DIAGNOSIS AND INITIAL WORKUP

- Differentiating from bronchitis is first step
 - Bronchitis:
 - Diffuse rhonchi and wheezing suggest diagnosis
 - Especially suggestive if low-grade temp and only moderately ill
 - Pneumonia:
 - Focal chest sounds: Inspiratory crepitant rales and duliness to percussion
 - Classic signs:
 - fever, pleurisy, cough, sputa production, rapid pulse and respiration Other s/s:
 - Chest retractions, nasal flaring, cyanosis lips, tongue, nail beds and conjunctiva

- Elderly: s/s esp fever may be absent or subtle in the elderly
- Infants/children: s/s are subtle
 - Cough, rapid/diff breathing, wheezing, recent URI, poor feeding
 - Temperature may not be helpful: above or below normal
 - Chest auscultation: typical focal abnormalities
 - <u>Small crackles to fingertips chest/back</u> (assessment straightforward)
 - Struggling toddlers: assessment is more difficult
- Extrapulmonary findings suggests atypical pneumonia (40% accurate)
 - H/A, bullous myringitis, mental confusion, erythema multiform
 - Much overlap exists extrapulmonary s/s may be unreliable to diagnose atypical
 - Elderly (vs young patients) may have extrapulmonary signs with S. pneumoniae
 - Concurrent illness may present with extrapulmonary symptoms
- CXR (AP/Lateral) required when suspect pneumonia in an adult
 - Confirms diagnosis or suggests other diagnosis (abscess, tumor, TB)
 - Indicates severity of pneumonia
 - Not diagnostic of causative organism: only 50% ID cause organism for pneumonia
 - Children treated without CXR based on s/s and auscultation
 - Rarity of other conditions: tumors, abscess, etc.
 - CXR is still recommended

Above: Rust colored sputa Left : Upper right lobe pneumonia Right: Mycoplasma pneumonia

LIKELY ORGANISMS

- Except for aspiration CAP virtually always single agent
- S. pneumoniae is leading "typical"
- <u>H. influenzae</u>
 - HIB vaccine for children
 - H. influenzae (b conjugate) drastically decreased incidence in infants and children
 - Most adults remain susceptible
 - Smokers and patients with COPD particularly susceptible
- M. catarrhalis common
- S. aureus rare in community acquired pneumonia except as sequel to influenza or DM
- <u>Gm negative</u> community-acquired pneumonia: nursing homes and debilitated elderly
- Aerobe organisms in CAP: strong possibility if patient is alcoholic as is K. pneumoniae
- Viral pneumonias
 - Influenza A and B (preventable w vaccine): winter
 - Respiratory syncytial virus (RSV): winter also prominent pathogen in young children
 - Parainfluenza: late summer, fall majority of lower respiratory infections in infants
 - Varicella zoster: pt of all ages
- HIV population: S. pneumoniae is most common
 - More common than PCP (Pneumocystis carinii pneumonia)
 - Lower the CD4 count -> greater the risk

"ATYPICAL" PNEUMONIAS

- Term fallen out of favor in some quarters
- Non-zoonotic pneumonias
 - <u>Legionella pneumophila</u>
 - Chlamydia pneumoniae
 - Mycoplasma pneumoniae
- Zoonotic (from animals)
 - <u>Q fever: Coxiella burnetii</u> (sheep)
 - <u>Tularemia: Francisella tularensis</u> (rabbits)
 - <u>Psittacosis: Chlamydia psittaci</u> (birds)
- Review history or possibility of zoonotic risk is minimal except for one of the following
 - Exposure to <u>psittacine birds</u>: psittacosis
 - Parrots, lovebirds, parakeets
 - Some seabirds, poultry, pigeons and pet birds can harbor
 - Sheep, lamb goat or cattle: Q fever
 - Rabbits: tularemia: lab workers, hunters, butchers, rabbit handlers
- Pulse-temperature deficit
 - Not present w tularemia
 - Occasionally present w Q fever
 - Always present with psittacosis
- <u>C. pneumoniae</u> or <u>M pneumoniae</u>
 - Occurs with up to 25% CAP
 - Consider even where no history of exposure

Pneumococcal pneumonia

PNEUMONIA

- 80% have fever
- 80 % have crackles
- Respiratory rate >20 per minute

- No data to support belief that atypical are less virulent then typical (widely held belief)
- Epidemiology of atypical pneumonia
 - Legionnaires rare in children
 - Chlamydial pneumonia common in children (more then generally believed)
 - <u>M pneumoniae: adolescents and young adults</u> (most common in this population)

L. pneumophila:	M. pneumoniae	C. pneumoniae
 Relative bradycardia High fever Mental status changes Diarrhea (not related to antibiotic use) Hypophosphatemia Renal impairment 	 Pharyngitis Diarrhea Otitis media and/or bullous myringitis Arthritis Erythema multiforme Wispy lower lobe infiltrates Dry non-productive cough 	 Pharyngitis Conjunctivitis Lymphadenopathy Wispy lower lobe infiltrates Dry non-productive cough

CLINICAL PRESENTATION OF ATYPICAL INFECTIONS

BEYOND THE CXR

- Sputum exam are rarely recommended
 - Patients can't produce proper specimen
 - Contaminated w oral flora
 - Comorbidity w COPD: sputa notoriously uninformative_
- Routine culture is avoided
 - Atypical organisms do NOT grow in routine culture media
 - False negatives with S pneumoniae and H-flu very fastidious
 - False positives with COPD colonized but not infected
- C/S sputum useful
 - With penicillin-resistant S pneumoniae likely
 - If patient on antibiotic when pneumonia develops
- Viral culture rarely performed in CAP
- Serologic treatment during acute and post-6 weeks
 - Confirms diagnosis but not contribute to treatment
 - Not likely approved with HMO
- ABG (f) severity of illness most hospitalized patient sick enough to need them
- CBC, electrolytes, LFT, RFT: provides prognostic not etiologic info
- Blood cultures standard for pneumonia workup
 - Any hosp pt should have pair of blood cultures
 - Only 20-30% positive
 - + culture highly specific and informative re therapy
- Universal empiric therapy is norm critics strongly advocate routine blood cultures

TUBERCULOSIS

EPIDEMIOLOGY:

- 15 million people infected with Mycobacterium tuberculosis
- CDC documented increase since 1985
 - Until 1985 no of cases was declining 5%-8% per year
 - 1985-1993: incidence increase 14%
- Factors causing increase TB
 - Advent of AIDS
 - Aging of population elderly institutionalized are latent pool
 - Growing number of immigrants from endemic countries
 - Lack of public health funding
 - Incidence of drug-resistant TB

PATHOPHYSIOLOGY

- Clinical course difficult to detect
- May not manifest s/s for years
- Function of age, immune status
 - Healthy person: lifetime risk progression 5%-15%
 - DM: 3X higher
 - HIV: 100 higher

SCREENING

- Infected persons at high risk (benefit from therapy)
- Persons with active disease
- Routine screening for persons at high risk see Groups at High Risk
- Mantoux test is standard skin test for M. tuberculosis
- Problems with Mantoux testing
 - Improper administration
 - Misinterpreted results
 - Anergy: diminished, absent delayed hypersensitivity

FALSE NEGATIVE PPD TESTING

- Inaccurate reading
- Age greater than 45 years
- AIDS
- Alcoholism
- Hematologic or lymphoreticular disease
- Intestinal bypass or gastrectomy
- Malnutrition
- Renal
- Sarcoidosis
- Systemic viral, bacterial, fungal Ix
- Zinc deficiency
- Live virus vaccines-MMR, polio

FALSE POSITIVE PPD TESTING

Error in administering test Cross-reaction with non-TB mycobacterium Previous bacille Calmette-Guerin vaccine Booster phenomenon

PPD and Live Vaccines

- PPD not effected if administered simultaneously
- If vaccine given before PPD it may

result

in false negative for up to 2 months

DIAGNOSING TB

Classic signs and symptoms of pulmonary TB

- Cough
- Fever, sweats, chills
- Anorexia and weight loss
- Malaise
- Other indicators
 - Upper-zone disease on CXR
 - Fever, night sweats and weight loss
 - CD4 count of less than 200 cells/mm3 in HIV infected patients
- Extra-pulmonary TB
 - Altered mental status (CNS involvement)
 - Back pain (spinal disease)
 - Abdominal pain (peritoneal disease)
 - Most common sites (descending order of frequency)
 - Pleural, lymphatic, bone and joint disease, genitourinary tract, miliary disease, meningitis, peritonitis

DIAGNOSTICS

- PPD negative in 10-25% of patients with active TB

- CXR when pulmonary TB is suspected
 - Atelectasis, parenchymal consolidation, lymphadenopathy, pleural effusion, miliary pattern
- Sputum culture remains gold standard
 - 81% sensitive; 98.5% specific for active disease
 - M tuberculosis may require 10-14 days to culture
 - Sensitivity may take 15-30 disease
 - Delays limit use of culture in making early treatment decisions
- Recent developed <u>rapid sputum tests</u> amplify and detect M tuberculosis
 - Ribosomal RNA or DNA may prove useful adjuncts
- Bronchoscopy considered for patients who cannot produce sputa

Left: mycobacterium * Above: granuloma

* Seen as red-stained rods

© 2001 Lois E. Brenneman, MSN, CS, ANP, FNP all rights reserved – www.npceu.com

OTHER CONSIDERATIONS

- Lobe involvement
 - Any lobe may be affected; lower lobe somewhat more common
 - Reactivation has predilection for upper-lobe
- Cavitation in 50% of patients
 - Extrapulmonary involvement common in HIV
 - Lower the CD4 (HIV) more likely TB findings
- Signs and symptoms may be minimal in children and infants until dissemination

INTERPRETATION OF TB SKIN-TEST RESULTS

- I 5 mm considered positive in persons who
 - Have had recent close contact with persons with active TB
 - Have or are suspected of having HIV infection
 - Have fibrotic changes on CXR consistent with TB
 - Have occupational exposure with inadequate precautions
- II 10 mm Considered positive in all persons who do not meet the above criteria but who belong to one or more of the following risk groups
 - Injecting drug users (seronegative for HIV)
 - Persons with medical factors which increase risk for progression to active TB
 - Residents and employees in high-risk congregate settings
 - Immigrants from countries where TB is prevalent
 - Some medically, underserved, low-income populations
 - Members of high-risk racial or ethnic minorities
 - Children under age 4 yrs and children/adolescents exposed to adults at high risk
 - Health care workers who have contact with high-risk patients

III - 15 mm Considered positive in anyone who does not meet the above criteria for I and II

IV - Recent tuberculin skin test conversion is defined as an increase in induration of 10 mm or more within a two-year period, regardless of age

 $V\,$ - Health care workers, the recommendations in sections I, II, III generally should be followed. In facilities where TB patients frequently receive care, the optimal cut-off point for health care workers with no other risk factors may be an induration of 10 mm or greater

OBSTRUCTIVE DISORDERS

ASTHMA

DEFINITION: obstructive lung disease manifested by recurrent wheezing

- Obstruction secondary to **inflammation**, mucosal edema, mucous hypersensitivity and smooth

muscle contraction

- Airways **hyperresponsive** which condition is exacerbated by inflammation

KEY CONCEPTS

- Acute, reversible episodes of airway obstruction -> wheezing, dyspnea, hyperinflation and

productive cough

- Bronchospasm, excessive mucus production, swelling of bronchial mucosa -> obstruction
- Severity variable as (f) degree of airway obstruction (severe hypoxia w extreme narrowing)
- Frequently involves allergic etiology mediated by IgE frequently involved
- Therapy directed at avoiding inflammation, acute attacks and further deterioration of airways

CLINICAL PRESENTATION

- Dyspnea, chest tightness/pain, cough, decreased exercise tolerance
- Wheezing, prolonged expiratory phase, decreased intensity of breath sounds
- Tachypnea, tachycardia, use of accessory muscles
- Very commonly coexists with allergies: nasal polyps, eczema, rhinorrhea, PND, dermatitis

DEFINITION

- Chronic, inflammatory disease of the airways
- The cellular players: T lymphocytes, mast cells, eosinophils,
- neutrophils and epithelial cells
- Effect on airways: wheezing, dyspnea, chest tightness, cough
- Symptoms worse at night and in am.
- Episodes coincide w reversible airflow obstruction

- Airway inflammation increases bronchial <u>hyperresponsiveness to</u> <u>exogenous substances</u>

GOALS

1997 GUIDELINES FOR DIAGNOSIS AND MANAGEMENT OF ASTHMA

Issued by National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH). - Updates the 1991 guidelines

- Prevention of chronic and troublesome asthma symptoms
- Maintenance of near-normal pulmonary function
- Maintenance of normal activity levels, including physical activity
- Prevention of asthma exacerbations requiring emergency department (ED) visits and hospitalizations
- Satisfaction of patients and family with asthma care
- Provision of optimal pharmacotherapy with minimal or no adverse reactions

DIAGNOSIS: 3 components

- Demonstration of episodic symptoms of airflow obstruction
- Evidence: airflow obstruction at least partly reversible
- Exclusion of other conditions from the differential diagnosis

CATEGORIES (replaces 1991: mild, moderate and severe)

INTERMITTENT

- Symptoms no more than twice a week
- Nocturnal symptoms no more than twice a month
- Exacerbations are brief (few hours to few days);
- Normal between episodes
- Peak expiratory flow (PEF) is normal
- Forced expiratory volume in 1 second (FEV1) or PEF
 - at least 80% of predicted normal value
 - varies by less than 1 second

MILD PERSISTENT

- Symptoms more than twice per week but not every day
- Nocturnal symptoms more than twice per month
- Exacerbations curb pt's daily activities
- FEV1 or PEF is 80% predicted value
- PEF varies by 20-30%

MODERATE PERSISTENT

- Daily asthma symptoms are th rule
- Daily use of inhaled, short acting B2 agonist
- Asthma episodes
 - Disrupt pt's activities
 - Occur at least twice a week
 - Continue several days
- Nocturnal symptoms typically occur once per week
- FEV1 or PEF between 80% and 61% of predicted value
- PEF varies by more than 30%

SEVERE PERSISTENT

- Symptoms are continual and restrict physical activity
- Exacerbations are frequent
- Nocturnal symptoms frequent
- FEV1 or PEF is no more than 60% predicted value
- PEF varies by more than 30%

CHRONIC OBSTRUCTIVE PULMONARY DISEASE

EPIDEMIOLOGY:

- COPD: chronic bronchitis/emphysema major cause of total disability
- 2nd only to coronary artery disease.
- Incurable: goal is to preserve function/limit complications.

TREATMENT OBJECTIVES

- Cessation of smoking
- Immunization against influenza and pneumococcal infection
- Control of bronchospasm and inflammation, mobilization of secretions
- Improvement of exercise tolerance
- Effective treatment of pneumonia and chronic hypoxemia.

PATHOPHYSIOLOGY

- COPD is subset of obstructive pulmonary diseases: asthma, bronchiectasis, cystic fibrosis
- Characterized by slowing of expiratory flow rate.

- Reduction in ratio of forced expiratory volume (FEV1) to forced vital capacity (FVC or VC.

- Earliest manifestation is increase in small airway resistance.

CLINICAL PRESENTATION

- S/S: any combo of cough, sputum production, wheezing and shortness of breath
- Most patients have mixed picture, although one pathophysiology predominates.

EMPHYSEMA alveolar destruction

PATHOPHYSIOLOGY

- <u>Pathologic enlargement of airspaces distal</u> to the terminal bronchioles due to destruction of the alveolar walls and its constituent components.

- Alveolar destructive process incompletely understood.
- Cigarette smoking increases the risk of COPD 30X
- Pathologic fragmentation of pulmonary elastic tissue leading to destruction of tissue structure
 - Alveolar architecture structure
 - Capillary bed structure
- Tissue structure destruction results in fall in expiratory flow rates
- Loss of lung's natural elastic recoil; poorly supported airways collapse during expiration
- Inspiratory flow rates are normal because airway caliber is normal.
- Pulmonary compliance increases with decline in elasticity
- Size of pulmonary capillary bed is reduced -> drop in carbon monoxide diffusing capacity
- Reduction in size of vascular bed parallels fall in alveolar surface
 - Ventilation still roughly matches perfusion
 - Significant hypoxemia does NOT ensue.

© 2001 Lois E. Brenneman, MSN, CS, ANP, FNP

CLINICAL PRESENTATION

- Dyspnea is major clinical sign, esp on exertion
- Cough is only a minor component
- Sputa production is scant.
- Patient with advanced disease is thin and tachypneic
- Use of accessory muscle and pursed lip breathing.
- Cyanosis is uncommon because PO2 only minimally reduced.
- Neck veins distended on expiration only.
- Anterior-posterior diameter of chest is increased.
- Percussion note is <u>hyperresonant.</u>
- Breath sounds seem distant.
- No signs of cor pulmonale
- Little CO2 retention until end stages
- CXR: hyperinflation and hyperlucency

CHRONIC BRONCHITIS: hyperplasia of mucus glands and narrowing of small airways

Predominant Pathologic Features

- Inflammation of cells lining the bronchial walls in conjunction
- Hyperplasia of the mucous glands and narrowing of small airways
- Etiology uncertain: chronic infections and airway hyperreactivity important role
- Smoking is major precipitant
- Also prolonged exposure to air pollution and bronchial irritants
- Even withdrawal of irritants, inflammatory process often continues unabated.
- Obstruction to airflow occurs with inspiration as well as with expiration.
- <u>Hypoxemia</u> from mismatching ventilation due to widespread narrowing and mucous plugging
- <u>Hypercarbia results</u> from impeded ventilation.

© 2001 Lois E. Brenneman, MSN, CS, ANP, FNP all rights reserved – www.npceu.com

Clubbing

- May lead to pulmonary hypertension and eventually cor pulmonale

- Less parenchymal damage as compared to emphysema
- Not effected: diffusing capacity, lung volumes and compliance.
- Typically colonized w H. influenzae and S. pneumoniae
- Little difference in outcome with prophylactic antibiotic therapy
- Typical patient: smoker who presents w history of chronic, productive cough.

By definition cough must be present for at least 3 months each year during two consecutive years.

- At first cough just in winter months but soon year round symptom w frequent exacerbations
- Dyspnea on exertion (DOE): disease well advanced.
- Orthopnea
 - May be manifestation of CHF or secondary to cough/sputa
 - Relieved by expectorating sputa

Cor pulmonale and right heart failure may ensue if chronic hypoxemia and pulmonary hypertension.

Distended neck veins, right ventricular heave, right ventricular gallop, peripheral edema.

- Typical patient:
 - Male in 50's, <u>plethoric and cyanotic</u> at end stage
 - Tobacco stains on fingers and teeth common
 - S/S cor pulmonale

- Lungs sound noisy: <u>crackles</u>, <u>wheezes</u>; prolonged expiratory phase.

- Hypoxemia w blood gases. PCO2 rises as patient's ability to move air effectively declines
- <u>Secondary polycythemia</u> is common
- CXR shows increased bronchovascular markings.

CLINICAL COURSE: generally progressive., although some may reach a plateau if stop smoking

- Presymptomatic stage of small airway disease may be reversible
- Decrease in maximum midexpiratory flow rate; increase in closing volume
- FEV 1 (forced expiratory volume at 1 second) used as measure of obstruction
- Rate of decline can be halted if patient stops smoking
- Cessation of smoking is critical to improving chances of survival.

DIAGNOSIS:

History Physical Exam: Diagnostics: PFT, CXR, ABG, Hgb/Hct, EKG, sputa exam .

Mucus secretion in bronchioles

