ANEMIA
Lois E. Brenneman, MSN, ANP, FNP, C

GENERAL PRINCIPLES

DEFINITION: Definition: reduction in Hgb or Hct (Hct is volume of RBC as %)

HEMATOPOIETIC PHYSIOLOGY

Conditions Needed for Blood Formation
- Intact marrow microenvironment
- Functional erythropoietin mechanism
- Uncompromised DNA synthesis
- Hemoglobin (Hgb) synthesis unimpaired by lack of iron or globin production

Life Cycle of Red Blood Cell
- 120 days with 0.8% being replaced every day
- Reticulocytes mature in about 24 hours in circulation
- 85% of aged RBCs engulfed by macrocyte-macrophage system
- 15% undergo hemolysis in circulation

Hemoglobin (main component of RBC)
- Vehicle for O2 and CO2 transport: combines readily with oxygen
- Red color from combination of heme (iron) and porphyrins (red pigment)
- Globulin, amino acids
- Normal adult Hg (Hgb A) comprised of alpha and beta polypeptide chains
- Hemoglobinopathies with variation of alpha and beta chains -> anemias
 - Sickle cell
 - Thalassemia,
 - Fetal Hg present by 8th week of gestation
 - Predominates in fetus
 - 70% by birth; trace by 6-12 months

ETIOLOGY OF ANEMIA

1. Decreased RBC production: deficiency of hematonic agents; bone marrow failure
2. Increase RBC destruction: hemolysis, hemorrhage

ERYTHROPOIESIS

Top (L->R): rubriblast, prorubricyte, rubricyte
Bottom: metarubricyte, diffusely basophilic erythrocyte, erythrocyte

© 2002 Lois E. Brenneman, MSN, CS, ANP, FNP
all rights reserved — www.npceu.com
PATHOPHYSIOLOGY OF ANEMIA

ANEMIAS SECONDARY TO REDUCED RED CELL PRODUCTION

HGB SYNTHESIS:
• Fe deficiency
• Thalassemia
• Anemia of chronic disease

DNA SYNTHESIS (Megaloblastic anemia):
• B12 deficiency
• Folate deficiency anemia

STEM CELL:
• Aplastic anemia
• Myeloproliferative leukemia

BONE CELL INFILTRATION
• Carcinoma
• Lymphoma

PURE RED CELL APLASIA

ANEMIAS SECONDARY TO PREMATURE DESTRUCTION

HEMOLYSIS INTRINSIC
• Membrane: hereditary spherocytosis, elliptocytosis
• Hgb: sickle cell, unstable hemoglobin
• Glycolysis: pyruvate kinase deficiency, etc.
• Oxygenation: G6PD deficiency

HEMOLYSIS EXTRINSIC
• Immune: warm antibody, cold antibody
• Microangiopathic:
 Thrombotic thrombocytopenic purpura, hemolytic-uremic syndrome, mechanical cardiac valve, paravalvular leak
• Infection: Clostridia
• Hypersplenism

BLOOD LOSS
• Acute blood loss
• Chronic blood loss

Aplastic anemia: thrombocytopenia responsible for widespread purpura and ecchymoses

Hepatosplenomegaly and characteristic facies of beta-thalassemia

Pallor with jaundice characteristic of pernicious anemia - premature greying and blue eyes is common

© 2002 Lois E. Brenneman, MSN, CS, ANP, FNP
all rights reserved — www.npceu.com 2
CLINICAL PRESENTATION

DIAGNOSIS:

HISTORY

- Family/ethnic history: thalassemia, sickle cell, splenectomy, cholelithiasis at early age
- Drug and toxic exposure:
 - chloramphenicol, methyldopa, quinidine, benzene, alkylating agents
- External blood loss: GI, GU (melena, hematochezia, hematuria)
- Dietary habits: poor habits and ETOH intake -> folic acid
- Rapidity of onset:
 - Gradual suggests BM failure or chronic blood loss
 - Sudden: hemolysis or acute hemorrhage
- History of infection: sepsis, AIDS, malaria

PHYSICAL EXAM

- General appearance, evaluation nutritional status
- Vital signs: hypotension, tachycardia (acute blood loss)
- Skin
 - Pallor: conjunctiva, lips, oral mucosa, nail beds, palmar creases
 - Jaundice (hemolysis)
 - Petechiae, purpura (thrombocytopenia)
- Mouth: glossitis (pernicious anemia, Fe deficiency anemia)
- Heart: flow murmurs, prosthetic valves (inc RBC destruct)
- Abdomen: splenomegaly (hemolysis, neoplasm, infiltrative disorders)
- Rectum: stool or occult blood
- Lymph noes: infiltrative lesions, infections

CLINICAL CONSIDERATIONS

Two types of erythrocyte disorders
- Anemia - deficit of red cells
- Polycythemia - excess of red cells

Relative anemia and relative polycythemia
- Normal total red cell mass with disturbances in regulation of plasma volume
- Pregnancy "dilutional anemia" - plasma volume is 43% greater in pregnancy

Absolute anemia: absolute decrease in numbers of RBC
CLINICAL PARAMETERS RELEVANT TO ANEMIA

HGB AND HCT: guide to severity of anemia
- Adult male: (norm: 13.6-17.7 g/dl; anemia: hct < 41%; hgb < 13.5 g/dL)
- Adult female: (norm: 12.0-15.0 g/dl; anemia: hct < 37%; hgb < 12g/dL)

RBC COUNT
- Norm male: 4.3-5.9 million/uL
- Norm female: 3.5-5.5 million/uL

RETICULOCYTE COUNT (young RBCs) normal: 0.5% to 1.5%
- Performed before any therapeutic maneuvers
- Less than 1%: inadequate BM productions
- Greater than 4% RBC destruction or acute blood loss
 must consider in light of degree of anemia and shift of reticulocytes in peripheral blood
- Further lab studies determined by reticulocyte count

RBC INDICES

MCH: index of amount of Hgb contained in RBC (norm: 27-31)
 Measure of hypochromia, hyperchromia, normochromic

MCV: measure of size of RBC (norm: 80-100); e.g. microcytic, macrocytic, normocytic

Normocytic
 Reticulocyte count: to distinguish
 - Excess destruction (high reticulocyte)
 - Decreased production (low reticulocyte)

Bone marrow: to distinguish
 - Marrow hypoplasia (toxic drugs, radiation)
 - RBC aplasia
 - marrow infiltration (myeloma, lymphoma, leukemia)
 - myelofibrosis; renal insufficiency

Microcytic anemia
 - Fe deficiency is most common cause
 - Thalassemia, lead poisoning
 - Anemia of chronic disease (ACD), sideroblastic anemia
 - Peripheral smear and RBC count to distinguish

Iron-deficiency vs thalassemia minor
 - Thalassemia minor: high RBC count
 - Fe deficiency: basophilic stippling

Serum ferritin - measure of iron stores
 - Low ferritin: establishes diagnosis Fe-deficiency
 - Normal or elevated ferritin:
 - R/O thalassemia (hgb electrophoresis)
 - Sideroblastic anemia
 - Anemia of chronic disease
 - Low Fe, low TIBC, increased ferritin, decreased reticulocytes
Macrocytic anemia:
- Elevated reticulocyte count (large diameter) r/o elevated MCV
- If elevated reticulocyte, do hemolytic studies
 Haptoglobin, LDH, indirect bilirubin
- If hemolysis is confirmed, determine cause eg Coombs
- Normal reticulocyte with macrocytic anemia: B12 or folate anemia
 RBC folate, serum B12, serum folate
- Bone marrow
 - Megaloblastic suggest B12/folate
 - Abnormal erythropoiesis/WBC - myelodysplastic

MCHC: measure of concentration of Hgb in gms/100 mg (norm 32-36)
- Not used much clinically

RDW: mathematical coefficient of width variation in RBC size measures anisocytosis
- As RDW increases there is greater variation in cell size
- Norm: 11.5-14.5
 - Normal RDW and
 - With elevated MCV: aplastic anemia, preleukemia
 - With normal MCV:
 - Normal, anemia of chronic disease (ACD)
 - Acute blood loss/hemolysis
 - Chronic lymphocytic leukemia (CLL)
 - Chronic myelocytic leukemia (CML)
 - Nonanemic enzymopathy or hemoglobinopathy
 - With decreased MCV: ACD, heterozygous thalassemia

- Elevated RDW
 - With elevated MCV:
 Vitamin B12 deficiency, folate deficiency, immune hemolytic anemia, cold agglutinins, chronic lymphocytic leukemia with high count, liver disease
 - With normal MCV:
 Early Fe-deficiency, early B12 deficiency, early folate deficiency, anemic hemoglobinopathy
 - With decreased MCV:
 Fe deficiency, RBC fragmentation, H.H. disease, thalassemia intermedia
RBC MORPHOLOGY

Anisocytosis - variation in size

Normal RBC: diameter equal to that of nucleus of mature lymphocyte
Macrocyte (macrocytosis): large RBC (high MCV)
 indicates megaloblastic anemia, liver disease or refractor anemia
Microcyte (microcytosis): small RBC (low MCV)
 iron deficiency anemia, hemoglobinopathies, sideroblastic anemias

NOTE: microcytes and macrocytes may coexist resulting in a normal MCV (but abnormal RDW)
resulting in marked anisocytosis (seen in hemolytic anemias)

Poikilocytosis - variation in shape - poikilocytes

- Spherocytes: hereditary spherocytosis, immune or other hemolytic states
- Tear drop cells: myeloproliferative diseases, pernicious anemia, thalassemia
- Helmet cells: microangiopathic hemolysis, severe iron deficiency
- Sickle cell: (HbSS)
- Target cells:
 - erythrocytes with distinct peripheral and central zone of hgb and annular area of pallor
 - aka "Mexican hat cells"
 - Anemias:
 Hemoglobinopathies, iron deficiencies, liver disease, thalassemias, hemoglobin C, hereditary stomatocytosis
- Nucleated RBCs: extramedullary hematopoiesis, hypoxia, hemolysis

© 2002 Lois E. Brenneman, MSN, CS, ANP, FNP
all rights reserved - www.npceu.com
Color

Hypochromasia - pale - cells lack hgb
Examples: Fe deficiency, sideroblastic anemia
Individual blood cell is pale in appearance due to too little hgb

Polychromasia - bluish coloring - sign of an immature cell (reticulocyte)
Cells stain light to moderate blue
Cells are larger than normal erythrocytes and correspond to reticulocytes

Hyperchromasia - darkly stained without normal pale center
Examples: megaloblastic anemia, spherocytosis
Cells appear to contain too much hgb

Reticulocytes: young erythrocytes recently released into blood
Requires supravital (stain while alive) staining with brilliant cresyl blue which reveals chromatin remnants of nucleus

Basophilic stippling: lead poisoning, thalassemia, hemolytic states

NOTE: do not confuse w basophilic stippling (heavy metal poisoning) where basophilic granules appear in cytoplasm of RBC. Due to a vascular degeneration of polychromatic substance of cytoplasm. Visualized w Romanowsky-type staining vs supravital staining (reticulocytes). Distinguish between fine physiologic and coarse pathologic stippling
Other Erythrocyte Abnormalities

Basophilic stippling: lead poisoning, thalassemia, hemolytic states

Heinz bodies: (denatured Hb: requires supravital stain)
- unstable hemoglobinopathies, some hemolytic anemias

Howell-jolly bodies (nuclear fragments): hemolytic, megaloblastic anemias, splenectomy
Cabot ring (nuclear remnants): megaloblastic anemias
Pappenheimer bodies: post splenectomy, hemolytic sideroblastic and megaloblastic anemias
Rouleaux formation: multiple myeloma, Waldenström’s macroglobulinemia
Presence of parasites: Plasmodium (malaria), Babesia (babesiosis)

Nucleated RBCs: extramedullary hematopoiesis, hypoxia, hemolysis
Target cells: see shape
Tear drop: myeloproliferative disease, pernicious anemia, thalassemia
Acanthocytes or spur cells: spur-cell anemia

Spherocytes: (special form of microcytes approx 6 um in diameter and spheroid shaped)
- hereditary spherocytosis, immunohemolytic disease

Schistocytes: greatly changed, shrunk and poorly stained
- Traumatic and microangiopathic hemolysis
- Hemolytic anemias and pernicious anemia

Burr cells or echinocytes or acanthocytes:
- Thorn-like processes
- May be artefacts in stained preps
 - best seen in fresh wet mount with phase contrast microscopy
- Normal cells easily converted in drying process
- Uremia
 - Congenital acanthocytoses (rare disease), advanced liver diseases
 - Sometimes in atrophy of spleen and possibly in various hemolytic processes

Bite cells: anemia associated w Heinz body formation
Ovalocytes: oval shaped erythrocytes of normal size (congenital hemolytic anemias)
Stomatocytes: mouth shaped central slit (stoma = mouth)
- alcoholism, chronic liver disease, rarely in congenital hemolytic anemias
Elliptocytes: elliptical form (seen most frequency in sickle cell)
MEASURES OF IRON

Serum iron: norm - 50-150
- Fe necessary for heme and other enzymes
- Majority of total Fe is present in hgb (70-95%)

Serum ferritin: form in which iron is stored in tissues
- Aside from RBC, major location of Fe in body is in storage pool.
- Fe deposited as either ferritin or hemosiderin and located largely in macrophages
- Norm: 30-250
 - range for storage of iron is wide
 - 25% of US women have no Fe stores

Total Iron Binding Capacity (TIBC)
- Normal 250-460 ug/dl
- Elevated: Fe deficiency anemia, pregnancy, polycythemia, wt loss
- Decreased:
 - Anemia of chronic disease, hemochromatosis, chronic liver disease, hemolytic anemias, malnutrition (protein depletion)

CLINICAL EFFECTS OF ANEMIA

- Pathophysiology
 - **Reduction in oxygen carrying capacity**
 - Tissue hypoxia

Compensatory mechanisms to restore tissue oxygenation
- **Increased O2 extraction**
 - Increased pulmonary and cardiac function -> increases O2 consumption and increase in O2 extraction to protect tissues

- **Selective tissue perfusion** (short term compensation) - shunting to vital organs
- **Increased erythropoietic activity** (long term compensation)

Common symptoms

Vasoconstriction, **pallor, tachypnea, dyspnea, tachycardia**, angina pectoris, high-output failure, intermittent claudication, night cramps in muscles, headache, **light-headedness**, tinnitus, roaring in ears, faintness, GI and GU symptoms
LABORATORY DIAGNOSIS OF ANEMIA

NORMAL VALUES

- **Hgb** (g/100 ml): men 14-16, women 12-15, newborn 14-20, infant 11-14, toddler 11.5-15
- **HCT** (%): men 40-50, women 37-47, Infants 33-42, toddlers 33-45
- **RBC** count (millions per mm3)
 - Male 4.6-6
 - Female 4.0-5.2
 - Newborn 4.0-6.6, infant 2.7-4.9, toddler 3.9-4.5

BLOOD COMPONENTS

HEMATOCRIT

WBC: 6-9,000/mm3
Platelets 200-

RBC: 4-5 mil/mm3

Plasma 400,000/mm3

Buffy Coat

MCV
- Microcytic: below 82 (60-80)
- Normocytic 83-100
- Macrocytic: greater than 100 (100-160)

* Adult levels by age 17
 < 2 yrs 77; 2-4 yrs 79; 5-7 yrs 81, 8-11 yrs 83

MCHC
- Hypochromic: below 32%
- Normochromic: 32-36%
- Hyperchromic: above 36%

RBC INDICES

MCV: Mean corpuscular volume (reflects size of cell)
MCH: Mean corpuscular hemoglobin (measures average wt of RBC Hg)
MCHC: Mean corpuscular hemoglobin concentration (measures avg concentration of Hg in RBC)
RDW: Red blood cell distribution width (degree of variation in RBC width)

Ferritin: major iron storage protein
 - Good indicator of iron stores in body
 - Decreased with fe-deficiency anemia

Total Iron Binding Capacity (TIBC):
 - Measurement of all proteins available for binding mobile iron
 - Increased in 70% of patients with iron deficiency anemia

Hemoglobin electrophoresis: identifies abnormal forms of hemoglobin (hemoglobinopathies)
B12 and Folate levels: differentiates various macrocytic anemias
CLASSES OF ANEMIAS

HEMOGLOBINOPATHIES
- Sickle cell disease, sickle cell trait
- Thalassemia major, thalassemia minor
- Hemoglobin C disease, hemoglobin H disease

HEMOLYTIC ANEMIAS
- Membrane defects
 - Hereditary spherocytosis
 - Hereditary elliptocytosis, paroxysmal nocturnal hemoglobinuria
- Glycolytic defects
 - Pyruvate kinase deficiency
 - Severe hypophosphatemia
- Oxygenation vulnerability:
 - G6PD deficiency
 - Methemoglobinemia
- Hemoglobinopathies
 - Sickle syndromes
 - Unstable hemoglobins, methemoglobinemas
- Extrinsic
 - Immune, autoimmune
 - Lymphoproliferative disease, drug toxicity
- Microangiopathic
 - Thrombotic thrombocytopenic purpura, hemolytic uremic syndrome
 - Disseminated intravascular coagulation (DIC)
 - Valve hemolysis, metastatic adenocarcinoma, vasculitis
- Infection: Plasmodium, Clostridium, Borrelia
- Hypersplenism
- Burns

MICROCYTIC ANEMIAS
- Iron deficiency anemia
- Thalassemia
- Anemia of chronic disease

MACROCYTIC
- Megaloblastic
 - B12
 - Folate deficiency
- Non-megaloblastic
 - Myelodysplasia, chemotherapy
 - Liver disease
 - Increased reticulocytosis
 - Myxedema

NORMOCYTIC: MANY CAUSES
- Aplastic anemia
- Others
COMMON ANEMIAS

IRON DEFICIENCY ANEMIA

ESSENTIALS OF DIAGNOSIS:

- Both pathognomonic: absent bone marrow Fe stores or serum ferritin < 12 uG/L
- Nearly always caused by bleeding in adults
- Responds to iron therapy

GENERAL CONSIDERATIONS

- Most common cause of anemia worldwide
- Usually mild but can be moderate or severe
- **Diagnosis is important so underlying cause can be treated** (eg GI blood loss)
- Aside from RBC, major location of Fe in body is in storage pool as ferritin or hemosiderin.
 - Fe deposited as either ferritin or hemosiderin and located largely in macrophages
 - Range for storage of iron is wide (0.5-2.0) and 25% of US women have none
- Average diet 10-15 mg Fe/day: 10% is absorbed: stomach, duodenum and upper jejunum
- Dietary intake as heme is efficiently absorbed (10-20%)
- Non-heme Fe is less absorbed (1-5%) - interference of PO4, tannins, other food components
- Small amounts (1 mg/day) lost thru exfoliation (skin, mucosal cells)
- **Menstrual blood** loss in women is major role in Fe metabolism
 - Average monthly blood loss is 50mL or about 0.7 mg/d
 - Loss may be 5 times the average flow
 - Women with **menorrhagia** of this degree almost always become Fe-deficient
- **Pregnancy** may upset Fe balance
 - Requirements increase to 2-5 mg/day during pregnancy and lactation
 - **Normal dietary Fe cannot supply** these requirements
 - Supplemental Fe needed during pregnancy and lactation
 - **Repeated pregnancy** is common cause of Fe deficiency
- Fe deficiency due to diet possible but rare
- Decreased Fe absorption can cause deficiency and usually due to gastric surgery
- **Blood loss** is most important cause of Fe deficiency esp GI
- Look for *GI source* unless another causes is ID
- Other sources: menorrhagia, uterine bleeding, repeated blood donation, abnormal valve function

SYMPTOMS

- Only symptoms are those of anemia (**fatigability, tachycardia, palpitations, tachypnea**)
- Severe causes progressive skin/mucosal changes (**smooth tongue, brittle nails, cheilosis**)
- Dysphagia with severe from esophageal webs (Lummer-Vinson syndrome)
- May develop **pica** for items that may not contain Fe (ice-cubes, etc.)
- ‘Spoon nails’ is common - koilonychia

Koilonychia: concave, deformed nails with Fe-deficiency anemia
LABORATORY FINDINGS

- Develops slowly and in stages
- Depletion of iron stores occurs first then depletion of FE in RBC

 Anemia and no change in RBC size

 Serum ferritin becomes abnormally low (highly reliable indicator)
 TIBC rises

- **MCV falls** - blood smears show **hypochromic microcytic anemia**
- **Anisocytosis** (size) followed by **poikilocytosis** (shape) develops
- Severe Fe deficiency:

 Bizarre peripheral smear with severely hypochromia cells, target cells, hypochromic
 penicillin-shaped cells and occasionally nucleated RBCs

- Elevated platelets in severe cases (normal in mild)

TREATMENT:

- Fe deficient state or response to Fe replacement confirms diagnosis
- Rarely life-threatening therefore **ID cause is important** (GI loss etc)
- **Cannot be treated with dietary Fe** - requires medicinal Fe

ORAL FE: Ferrous SO₄ is best
- Compliance is enhanced if introduced slowly; optimal is tid on empty stomach
- Dosing: Ferrous So₄ 325 tid
- Provides 180 mg Fe daily of which 10-20 mg is absorbed
- Even greater absorption in severe deficiency
- Take w food if not tolerate empty stomach

- HCT halfway towards normal in 3 weeks is appropriate response
- Should return to normal in 2 months
- **Treat for 3-6 months after restoration of normal to replenish Fe stores**
- Failure of treatment is usually due to non-compliance
- Other reasons for failure: incorrect dx, GI loss which exceeds rate of new erythropoiesis

PARENTERAL FE
- Indications: intolerance to oral Fe (poor absorption)
- GI disease (IBD)
- Continued uncorrectable blood loss

 Severe even fatal hypersensitivity reaction :

 Use parenteral Fe only with clinically documented cases of Fe-deficiency after reasonable attempt made to use oral therapy
MACROCYTIC ANEMIAS

B12 DEFICIENCY - Pernicious anemia

ESSENTIALS OF DIAGNOSIS

- Macrocytic anemia
 - Macro-ovalocytes and hypersegmented neutrophils on smear
 - Serum B12 less than 100 ug/ml

ETIOLOGY AND PATHOGENESIS

- After being ingested B12 bound to intrinsic factor - protein secreted by gastric parietal cells
- B12 present in all foods of animal origin
 - Dietary B12 rare and seen only in vegans *
 - * strict vegetarians who eat no animal products including dairy, eggs
- Abdominal surgery may lead to B12 deficiency
 - Gastrectomy: eliminate site of intrinsic factor production
 - Blind loop cause bacterial overgrowth in lumen thus competition of B12
 - Surgery resection of ilium will eliminate site of B12 absorption
- Rare causes B12 deficiency: fish tapeworm, pancreatic insufficiency, Crohn's disease

- Pernicious anemia: classic anemia in this classification
 - Lack of intrinsic factor: is the fundamental defect causing PA
 - B12 not absorbed -> vitamin B12 deficiency *
 - Hereditary autoimmune disorder historically
 - Traditionally seen in pts of Scandinavian or northern European ancestry
 - Now seen in young black and Hispanic women
 - Rarely manifests before age 35
 - Additional clinical findings
 - Atrophic gastritis invariably present -> histamine-fast achlorhydria
 - Autoimmune diseases (incl IgA deficiency)
 - Polyglandular endocrine insufficiency
 - Increased risk gastric carcinoma from atrophic gastritis

* Dietary deficiency e.g. vegans do NOT require IM administration (PO is sufficient) vs pernicious anemia wherein the lack of intrinsic factor requires IM administration

- Pathophysiology of macrocytic anemias
 - Anemia resulting from deficiency of B12 or folic acid
 - Caused by disruption of DNA synthesis of blast cells in bone marrow
 - Disruption produces
 - Megaloblasts: large abnormal bone marrow cells
 - Macrocytic RBCs in peripheral blood
 - Granulocytes hypersegmented
 - Decreased: RBC, WBC, platelets
 - Megaloblastic dyspepsia:
 - Results from disordered nucleic acid metabolism
 - Abnormal production and maturation of RBCs WBC and platelet systems
 - Evidence that PA develops due to genetically determined autoimmune disease
 - Manifested by serum/gastric juice antibodies vs intrinsic factor and parietal cells
- **Neurologic lesions occur with pernicious anemia** (not with folic acid deficiency anemia)
 - Biochemistry basis not known
 - Peripheral nerve degeneration
 - Degeneration of posterior columns of spinal cord
 - Possibly etiology
 - Abnormal fatty acid metabolism in peripheral nerves
 - Degeneration of white matter of spinal cord

CLINICAL MANIFESTATIONS:

- Hallmark is **megaloblastic anemia** - severe w HCT as low as 10-15%
- Megaloblastic state -> changes in mucosal cells -> **glossitis** and vague **GI complaints** (anorexia, diarrhea)
- **Achlorhydria**
- **Complex neurologic syndrome**
 - peripheral nerves affected first -> pt c/o of paraphasias
 - posterior columns next affected -> difficulty in balance
 - more advanced stages: cerebral function affected
 - sometimes dementia/ neuropsychiatric changes may precede hematologic changes

- **Physical Exam**
 - Pallor, possibly mildly icteric
 - **Neuro** deficits: **decreased vibration and position sense**

- B12 is non specific:
 - **Megaloblastic anemia**
 - Nonspecific **glossitis**
 - Elevated LDH
 - Weight loss
 - **Neurologic abnormalities**
 - **Decreased serum B12**
 - Methylmalonic acidemia
 - **Response to B12 therapy** vs folic acid (no response)

- Neurologic manifestations B12
 - **Symmetric paresthesias of feet and hands**
 - **Vibratory** sense and proprioception disturbances
 - Progresses to **spastic ataxia**
 - Degenerative changes in dorsal and lateral columns of spinal cord
 - **Cerebral signs**
 - Irritability, somnolence, memory impairment/perversion of taste, smell, vision
 - Psychologic and mental derangement a.k.a. "**megaloblastic madness**"

- Normal neutrophils
- Blue eyes and premature greying and northern European descent are associated with pernicious anemia

© 2002 Lois E. Brenneman, MSN, CS, ANP, FNP
all rights reserved — www.npceu.com
LABORATORY FEATURES:

- **Megaloblastic anemia** of variable severity which may be severe
- MCV usually strikingly elevated **110-140**
- Occasional normal MCV with folate deficiency due to coexistent thalassemia or Fe deficiency
- Evaluate pt with normal MCV and absence of anemia if suggestive neurologic symptoms

- Peripheral blood smear strikingly abnormal
 - Anisocytosis and poikilocytosis
 - Macro-ovalocyte is characteristic
 - Numerous other abnormal shapes
- Frequently mistaken for hemolytic due to striking abnormal RBC

- **Neutrophils are hypersegmented**: mean lobe count > 4 or finding 6-lobed cells
- **Reticulocyte count is reduced**
 - WBC and platelets decreased in severe cases and pancytopenia present
 - B12 affects all hematopoietic cells
- **Hypersegmented neutrophils** is characteristic
 - Bone marrow is characteristically abnormal
 - Marked erythroid hyperplasia
 - Defective RBC production
 - Ineffective erythropoiesis
 - Characteristic megaloblastic erythroid changes
 - Abnormally large cell size
 - Asynchronous maturation: nucleus/cytoplasm *
 - Myeloid series, giant metamyelocytes

* Cytoplasmic maturation continues while impaired DNA synthesis causes nuclear development

- Other laboratory abnormalities
 - Elevated serum LDH
 - Modest increase in indirect bilirubin
 - Both due to intramedullary destruction of developing abnormal erythroid cells
 - Abnormally low B12 serum level: key to diagnosis
 - Norm: 150-350 pg/ml; B12 def: < 100

- **Schillings test** used to document the decreased absorption of oral B12
 - Large IM dose B12 to saturate plasma transport proteins
 - Radiolabeled B12 given orally
 - 24 hr urine collection determines how much B12 absorbed and excreted
 - Normally less than 7% of administered dose is present in urine
 - With impaired absorption less than 3% will be present in urine
 - **Second stage**: administer radiolabeled B12 with intrinsic factor
 - Should correct normally low absorption where problem is pernicious anemia
 - Treatment of other causes of B12 deficiency will reverse abnormal 2nd stage of test
 - Antibiotics for bacterial overgrowth
 - Pancreatic enzymes for pancreatic def
 - Antibiotics for tapeworm

Note: where full-blown megaloblastic state causes abnormalities in intestinal epithelium -> generalized malabsorption. Here second stage will remain abnormal until intestinal mucosal defect is corrected by B12 replacement (2 months).
TREATMENT

- **Parenteral B12**: 100 ug per dose
 - Daily x 1 week; Weekly x 1 month
 - Monthly for life
- Lifelong disorder - if d/c treatment -> pernicious anemia will recur
- **Oral cobalamin** in high doses (1000 ug/d)
 - Can replace in some cases
 - Must be continuous and daily
- Patients respond immediately - improvement in well-being
- Hypokalemia may complicate first several days of therapy esp if anemia is severe
- Brisk reticulocytosis in 5-7 days
- Normal hematologic picture in 2 months
- **CNS s/s reversible if short duration** (< 6 mo) otherwise may be permanent

FOLIC ACID DEFICIENCY ANEMIA

ESSENTIALS OF DIAGNOSIS

- Macrocytic anemia
- Macro-ovalocytes and hypersegmented neutrophils
- Normal serum B12 levels
- Reduced folate levels in RBC or serum

PATHOPHYSIOLOGY

- **Folic acid** is common term for pteroylmonoglutamic acid
- Present in most **fruits and vegetables** - esp citrus and green leafy vegetables
- Daily requirement: 50-100 ug/d usually met in diet
- Total body stores approx 5000 ug (enough for 2-3 months)
- **Inadequate dietary intake** most common cause of deficiency
- Candidates
 - **Alcoholics**, elderly who do **not eat fresh fruits and vegetables**
 - Anorectic patients, persons who overcook food
 - **Reduced folate absorption** rare absorbed via entire GI tract
- Certain **drugs** may interfere: **phenytoin, Bactrim, sulfasalazine**
- Increased need (5-10X normal): require 1 mg/d supplements
- **Pregnancy**, hemolytic anemia, exfoliative skin disease

CLINICAL FINDINGS

Signs and Symptoms
- similar to B12 deficiency
- **Megaloblastic anemia**, megaloblastic changes in mucosa
- **None of the neurologic abnormalities**

Laboratory Findings
- ID to B12 deficiency, however B12 is normal
- Folic acid is low (less than 3 ug/ml)
- RBC folate more reliable:
 - Replaced serum folate as appropriate test (level less than 150 ug is dx)
TREATMENT

- Treat with **folic acid 1 mg/d PO**
- Response is **rapid improvement** in sense of well being
- **Reticulocytosis in 5-7 days**; total correction within 2 months
- **B12 deficiency:**
 - Large doses of folate may produce hematologic improvement but will not prevent progressive neurologic damage

SICKLE CELL ANEMIA

ESSENTIALS OF DIAGNOSIS

- Irreversibly **sickled cells** on peripheral blood smear
- Positive family history and lifelong history of hemolytic anemia
- Recurrent painful episodes
- **Hgb S** is the major hgb on electrophoresis

GENERAL CONSIDERATIONS

- **Autosomal recessive disorder** - single gene (valine substitutes for glutamine on B chain)
- **Hemolytic anemia with severe clinical consequences**
 - **Hgb S** forms polymers in the deoxy form which damage RBC membrane
 - Polymer formation and early membrane damage are reversible
 - Repeated sickling results in irreversible damage and **sickle configuration of RBC**
 - Rate of sickling
 - Concentration of hgb S in RBC
 - RBC dehydration renders cell very vulnerable
 - Factors which increase: **acidosis, hypoxemia** (systemic or local)
 - Influenced by other hgb in cell:
 - HgbF cannot participate in polymer formation thus reduces sickling
 - Prenatal diagnosis is available; **genetic counseling** available

CLINICAL SIGNS AND SYMPTOMS

- Carried in **8% of American blacks**; 1 in 400 births of American blacks produce disease
- Onset during first year of life when Hgb F falls
- Chronic **hemolytic anemia**: jaundice, gallstones, splenomegaly, poorly healing tibial ulcers
- Chronic anemia may be **life threatening** (hemolytic or aplastic crisis)
- **Spleen** may actually sequester sickle cells in childhood before it infarcts predisposing to crisis
- Coexisting abnormalities can exist: Hgb S-C disease, G6PD deficiencies
- Acute painful episodes due to **vaso-occlusion**
 - Etiology: Spontaneous or induced (infection, dehydration, hypoxia)
 - Clusters of **sickled cells occlude microvasculature of organs**
 - Last hours to days
 - Sites: **bones** (esp long bone and back) and chest
 - Episodes not associated with increased hemolysis
- **Organ dysfunction** occurs with repeated episodes esp heart and liver
 - **Ischemic necrosis**: bone predisposed to **osteomyelitis**
 - **Renal tubular** concentrating deficits and gross hematuria (more common w trait)
 - **Retinopathy** similar to diabetic retinopathy
- Delayed puberty
- Increased susceptibility to infection (hyposplenism and defects in complement pathways)
- Patients appear chronically ill and jaundice
- Hepatomegaly but spleen is not palpable in adults
- Heart enlarged with hyperdynamic precordium and systolic murmur
- Non-healing tibial ulcers; retinopathy
- Develops into chronic multisystem disease with death from organ failure
- Life expectancy 40-50 with supportive care

LABORATORY FINDINGS

- **Chronic hemolytic anemia:** HCT 20-30%
- Peripheral smear shows 5-50% **sickled cells**
- **Reticulocytoses** (10-25%), nucleated RBCs
- Hallmarks of **hyposplenism:** Howell-Jolly bodies and target cells
- WBC elevated: 12,000-15,000/uL; thrombocytosis
- Elevated indirect **bilirubin**
- Testing: screening tests with **hemoglobin electrophoresis** for confirmation
 - Homozygous disease: no Hgb A is present
 - Increased Hgb F (high Hgb F associated with more benign course)

TREATMENT

- No specific treatment available
- Folic acid supplementation; **transfusions** for aplastic or hemolytic crisis
- Pneumococcal vaccination
- Treat precipitating factors with crisis: hydration, oxygenation
- Exchange transfusion for **acute vaso-occlusive crisis:** intractable pain, priapism and CVA
- Cytotoxic agents (hydroxyurea) increases hgb F levels
- **Hydroxyurea** (500-750 mg/d) reduces painful crisis
 - Indicated for quality-of-life issues with intractable pain
 - Long-term safety not established; concerns re: secondary malignancy
- Allogenic bone marrow transplantation under investigation

SICKLE CELl TRAIT

- **Heterozygous genotype** (AS)
- Clinically normal; acute painful episodes only under extreme conditions
 - Vigorous exercise under high altitude
 - Unpressurized aircraft
- Hematologically normal: no anemia or sickle cells on smear
- Predisposed to renal tubular function defect: dilute urine and gross hematuria
- Screening test will be positive; electrophoresis reveals approximately 40% hgb S
- No treatment indicated; genetic counseling encouraged
SICKLE THALASSEMIA

- Homozygous sickle cell anemia and alpha thalassemia
 - Milder form of hemolysis
 - Slower sickling rate results from reduced RBC hgb concentration (MCHC)
- Heterozygous sickle cell and heterozygous beta thalassemia
 - Clinically affected with sickle cell syndrome; very similar to homozygous SS
 - Less severe vaso-occlusive crisis; spleen usually not infarcted
 - MCV low vs normal MCV with SS
 - Electrophoresis: no Hgb A but increase Hgb A2 (not present in SS)
- Sickle B+ thalassemia: milder disorder vs SS w fewer crisis
 - Splenomegaly; less severe hemolytic anemia; HCT 30-38% w 5-10% reticulocytes
 - Electrophoresis shows some hgb A