ALTERATIONS IN CELLULAR AND TISSUE FUNCTION

Lois E. Brenneman, MSN, APN,

CELLULAR ADAPTATION

Atrophy - decrease or shrinkage in cell size

- Can (if sufficient numbers) result in shrinkage of entire organ
 Example: muscular atrophy after cast is removed
 Example: sports steroid abuse causes atrophy of penis

- Physiologic atrophy - normal process
 Example: atrophy of thymus during childhood

- Pathologic atrophy - disease process
 Example: Addison’s disease -> atrophy adrenal glands

- Disuse Atrophy
 Example: Prolonged bed rest causes muscle atrophy
 Example: Casting limb causes atrophy

Atrophic cells have fewer mitochondria and myofilaments
Autophagic vacuoles occurs with malnutrition

Lipofuscin - yellow-brown age pigment (may resist destruction)
- Persists as membrane-bound residue bodies
- Accumulates w age: liver, myocardial and atrophic cells
- Results in “age spots” to skin

“Age spots” Lipofuscin accumulation to skin
Hypertrophy - increase in cell size (vs cell number with hyperplasia)

Results in increased size of organ
Cardiac and kidney esp prone to hypertrophy
Increased size -> increased cellular protein and not increased fluid

Physiologic hypertrophy - normal process
- Example: muscle increase with exercise
- Example: genital size increase with hormones of puberty

Pathologic hypertrophy - disease process
- Example - Left ventricular hypertrophy from hypertension -> congestive heart failure

Triggers for hypertrophy
- Mechanical: stretch, exercise
- Trophic: growth factors, hormones, vasoactive agents

CELLULAR HYPERTROPY

Left: dependent edema in CHF
Right: dilated cardiomyopathy

Left ventricular hypertrophy (bottom) vs normal (top)
Hyperplasia - increase in number of cells (increased rate of cell division)
- Can occur in response to injury esp with cell death
- Can occur together with hypertrophy
note: if organ with non-dividing cells (e.g. myocardial fibers) only hypertrophy can place

Compensatory hyperplasia - adaptive mechanism allowing for organ regeneration
- Liver can regenerate from a 70% loss after 2 weeks (hepatocyte growth factor)
- Non-regenerative cells: nerve, skeletal muscle, myocardial cells, ocular lens

- Compensatory-capable cells
 Epidermal and intestinal epithelium, hepatocytes, bone marrow, fibroblasts,
 bone, cartilage and smooth muscle
- Example: callus on foot from mechanical stimulation (hyperplasia of epidermal cells)

Hormonal hyperplasia - estrogen-dependent organs (breast, uterus)
Example: pregnancy (both hyperplasia and hypertrophy of uterus),
Example: thickening of endometrium (uterine lining) thickening in response to
estrogen/progesterone

Pathological hyperplasia - abnormal proliferation of normal cells
- Usually in response to excessive hormonal stimulation
- Example: endometrial proliferation with “unopposed” estrogens (no progestins)
 - Excessive and dysfunctional vaginal bleed
 - Can lead to endometrial cancer
 Example: failure to prescribe progestin with estrogen in menopause
 Example: non-ovulatory cycles -> no progestins -> proliferation
Dysplasia - (not true adaptive change) abnormal changes in size, shape or organization of mature cells

- **Atypical hyperplasia**
 - Most commonly occur in epithelium of cervix, respiratory tract
 - Commonly associated with neoplasia - often adjacent to malignant cells
 - May be classed as **high-grade** or **low grade**

Example: Bethesda Pap classification
 - HSIL - high grade squamous intraepithelial lesion
 - LSIL - low grade squamous intraepithelial lesion

NORMAL AND ABNORMAL PAP CYTOLOGY

- Normal Pap
- LSIL
- HSIL
- Squamous Cell CA Cervix
- Atrophic pap
Metaplasia - reversible replacement of one mature cell type by another

- Replacement cells are sometimes less differentiated than original
- Thought to be the result of reprogramming of certain cell types
 - Stem cells existing most epithelium
 - Undifferentiated mesenchymal cells on connective tissue
- Reprogrammed cells mature along a new pathway mediated by cytokines and growth factors

Example: **Lungs** - pathological change

- Smoking causes replacement of normal columnar ciliated epithelial cells of bronchi with stratified squamous epithelium
- New cells have no cilia and do not secrete mucus -> loss of protective mechanism
- Cease smoking -> reversal of changes; prolonged smoking -> cancerous transformation

Example: **Cervical metaplasia** - transformation - physiologic (normal) change

Estrogen-induced acid environment in vagina cause original columnar epithelium to transform into squamous epithelium on face of cervix -> transformation zone
COMMON ETIOLOGIES OF CELL INJURY

HYPOXIA - Lack of sufficient oxygen

- Most common cause of cell injury
- Arises from inadequate O2 in blood or decreased tissue perfusion
- Causes disturbed metabolism or excess lactic acid release
- Anaerobic metabolism results in metabolic acidosis
 - Ischemia: reduced blood supply - most common cause of hypoxia
 Example: angina (chest pain often preceding an MI)
 Example: peripheral vascular disease
- Anoxia - total lack of oxygen - usually caused by acute obstruction
 Example: myocardial infarction
 Example: CVA, pulmonary embolism, gangrene
- Reperfusion injury - restoration of oxygen resulting in high-reactive intermediates (radicals)
 Radicals: (OH-, H2O2, superoxide) can damage membranes
 Damaged decreased by antioxidants (block synthesis or inactivate radicals)
 Vitamin E, vitamin C, cysteine, glutathione, albumin, ceruloplasmin, transferrin

HYPOXEMIA

Anoxia - Gangrene in toes of a diabetic

Ischemia: Levine’s sign in angina (above) due to plaques obstructing coronary arteries (below)

Chronic ischemia from compromised circulation (PVD).
Note also changes from chronic lack of O2
MECHANICAL INJURIES

- Mechanical trauma, temperature gradients, electrical stimulation
- Atmospheric pressure gradients, irradiation
- Types of damage: rupture of membrane/walls, disruption reproduction
- Local swelling may impair microcirculation and predispose to hypoxia

Blunt force: application of mechanical force to body resulting in tearing, shearing or crushing of tissues

Contusion (bruise) bleeding into skin or underlying tissue secondary to blow which crushes soft tissue and ruptures blood vessels without breaking skin
- Several hours may ensure before injury is apparent (change in skin color)
- **Ecchymosis**: discoloration (lay term is “black and blue”)
- May occur in internal organs

Hematoma - collection of blood in soft tissues or enclosed space
- Example: Subdural h. - blood between inner surface of dura mater and surface of brain
- Epidural h. - blood between inner surface of skull and dura

Abrasion (scrape) removal of superficial layer of skin secondary to friction between skin and injuring object
- Variable: fine thin scratch to large areas of denudation
- May mirror patterning of injuring object
- May have ecchymosis as with a contusion

MECHANICAL TISSUE INJURY

Clockwise (top left): Blunt trauma, hematoma, abrasion (knee), ecchymosis, avulsion, laceration
Laceration - tear or rip when tensile secondary to injuring force exceeding tensile strength of skin
- Edges jagged and irregular (vs incision where skin is cleanly divided)
- Portions may have small vessels and nerves which are stretched not broken
- Underlying structure may be undermined with pocket formation
- Avulsion - extreme laceration were wide area of tissue pulled away -> flap
- Lacerations of underlying organs common with blunt trauma
- Severe trauma may lacerate major vessels -> hemorrhaging

Fractures: breaking or shattering of bones - see Ortho Handout

SHARP FORCE INJURIES

Incision wounds: a cut which is longer than it is deep
- Wound may be straight or jagged
- No tissue or undermining
- May be thin and narrow or gaping
- Significant external bleed with minimal internal hemorrhage
Example: surgical incision or knife slash wounds
 “Hesitation marks” common if self-inflicted: multiple grouped superficial wounds in same area
Example: accidental injury with sharp object e.g. sheet metal or glass chard

Stab wounds - penetrating sharp force which is deeper than it is long - sharp edge instrument
- Created by knife or other instrument with sharp edge
- Sharp instrument thus no underlying crushing injury
- Edges usually clean but may be associated with blunt injury e.g. handle of knife
- External bleed may be quite small (tissue pressure) with extensive internal bleed

Puncture wounds - instruments or objects with sharp points but without sharp edge
- Example: stepping on a nail
- Can be deep in spite of benign appearance
- Very prone to infection esp with anaerobes eg tetanus, gangrene

© 2004 Lois E. Brenneman, MSN, CS, ANP, FNP
all rights reserved — www.npceu.com
Chopping wounds - heavy, edged instruments
- Example: axes, hatchets, propeller blades
- Combines sharp and blunt force characteristics
- Cutting, crushing injuries to superficial and underlying tissues
- Can result in amputation

CHEMICAL INJURIES

Poisons, drugs/therapeutic agents (disrupt cellular balance)
Chemicals (structural damage, metabolic damage, disrupt energy production, toxic metabolites)
Mechanism:
- Direct toxicity
- Formation of reactive free radicals and lipid peroxidation
Example: carbon tetrachloride injury (agent in dry cleaning)
 Converted by liver into CCl3 (highly toxic radical) -> destroys liver
Poisons: highly toxic substances which cause cellular injury
- Some are lethal (kill cells) rapidly with minute exposure (example: cyanide)
- Some cause injury with chronic exposure (example: ETOH, carbontetrachloride)

Lead and other heavy metals
- Common cause of childhood poisonings (esp old plumbing and lead paint)
- Affects CNS, hematopoieic

Microorganisms

Endotoxins - secrete directly or liberate when bacteria is destroyed
Virus- commandeer cell metabolism and function

Genetic defects

Inborn errors of metabolism or gross malformations
Mechanism are widely variable

Nutritional imbalances

Includes protein and vitamin deficiencies - disrupt cellular function
Significant problem in third world countries
Caloric excesses lead to production of excessive lipids
Excessive fat intake associated with cancer and other disorders

Immunologic reactions

Hypersensitivity reactions - release of histamines/other substances
Cellular response is inflammation, scar tissue and tissue death
Renal nephrons are particularly susceptible
Immunodeficiencies allow for opportunistic infections
Cellular Changes from Adaptation or Injury

Cellular Swelling

- **Hydropic cellular swelling** is initial response to disruption of cellular metabolism
 - Occurs most frequently with cellular hypoxia - impairs ability to synthesize DNA
 - Results in increased permeability
 - Death occurs when large molecules and enzymes leak out
 - Vacuoles often give clue to continued accumulation of water within cell

Ischemia/hypoxic model - primary target is oxidative phosphorylation
 - Decreased generation of ATP
 - Glycolysis stimulated - anaerobic metabolism - pyruvate, lactic acid production
 - Events reversible to a point - lethally injured after “point of no return”
 - Hyper permeable membrane causes protein leakage - useful marker of cell death

Lipid Accumulation

Fatty deposits in cytoplasm of parenchymal cells of certain organs
 - Most commonly occurs in liver - “fatty liver” (liver looks enlarged, yellow, greasy)
 - Also: heart and kidneys

Cellular fatty accumulation - leads to functional impairment of organ esp liver
 - Predominant lipid involved is triglycerides
 - Alcohol initiates initial hepatic changes
 - Protein-calorie malnutrition causes decrease in lipid transport proteins
 - Other organic molecules can cause toxicity (carbon tetrachloride, benzine, etc)
 - Fibrous scarring of cirrhosis results from reaction to lipid infiltration into hepatocytes
 - Cells of heart and kidneys undergo fatty change
 - Heart: most common stimulus is hypoxia
 - Liver: most common stimulus is toxins (also applies to kidney)

Interstitial Fatty Infiltration

- Occurs with obesity
 - Transformation of interstitial connective tissue cells to fat cells
 - Rarely affects function of organ - most common in heart and pancreas of obesity
 - Early formation of fat cells is critical - fat cells laid down during certain periods
 - Gestation, 1st yr life
 - Immediately after puberty
 - Obese child: implications for future health
 - Develops increased fat cell numbers which remains for life
 - Decrease in size with weight loss
 - Adult-onset obesity - caloric intake exceeds demands
 - Excess converted to fat
 - Fat distribution governed by hereditary
 - Predisposes to DM
Free radicals and reperfusion injury

- Arise as consequence of cellular oxidation-reduction
- Involves enzymatic-nonenzymatic reactions
- Damage to cells
 - Hydroxyl radical (-OH) is particularly reactive
 - Lipid peroxidation process is particularly - produce aldehydes and organic free radicals
 - Causes membrane/organelle damage eventually cell death

Reperfusion injury - activated oxygen including H2O2 and hydroxyl radicals
Ischemic tissue reperfused with activated oxygen
Macrophages and neutrophils generate superoxide anion during phagocytosis
Lethal injury ensures during extended ischemia from superoxide anions so generated
Free radicals so formed continue damage until removed
Endogenous antioxidants (Vitamin C, E, d-penicillamine, transferrin)
Vitamin C protect other molecules via being oxidized in their place
Vitamin E (fat soluble) prevents oxidative attack on lipids esp in membrane
Transferrin finds free iron; catalase from peroxisomes decomposes H2O2
Tissue damage function of formation and termination of free radicals

Glycogen depositions - excess
Storage form glucose
Normally quickly degraded to glucose for energy
Glycogen storage disease of glycogenosis - autosomal recessive disorder
- excess deposition of glycogen in organs and tissue
- glycogen accumulates in liver and kidneys
Diabetes mellitus: disturbance related to lack of insulin
Excess glycogen in proximal convoluted tubules (kidney) and liver

Pigmentation abnormalities - colored substances accumulating within cell

ENDOGENOUS - produced within body

Melanin
- Imparts color to skin - protects fro UV radiation
- Melanomas arise from melanocytes
- Addison’s disease: excessive pigmentation
- “Liver spots” or lentigines: decreased melanocyte activity with aging
 Skin becomes paler with areas of hyperpigmentation

Hemosiderin - derivative of hgb
- Pigment formed from excessive accumulation of iron
- Breakdown of hemoglobin - ecchymosis
- Hemosiderosis - excess absorbed dietary iron
- Accumulation does not interfere with organ function unless extreme

EXOGENOUS - produced outside the body

Inhalation of organic carbon from burning fossil fuels - “black lung” or anthracosis
Lipofuscin pigmentation with aging - golden brown granules
 “Wear and tear” pigment gradually accumulates with age; no apparent harm

Predominant in atrophied or chronically injured cells
Calcification

- Normally calcium deposited only in bones and teeth - process under hormonal influence
- Pathological calcification - skin - soft tissue - blood vessels, heart, kidney
- May precipitate in areas of chronic inflammation or dead/degenerating tissue

Metastatic calcification - circulating calcium from metastatic bone resorption or destruction
Calcification from **immobilization** e.g. fractures or spinal cord injury

Dystrophic calcification: calcium precipitates into areas of unresolved healing
- Intracellular - extracellular or both
- Localizes in mitochondria and propagates
- Results in organ dysfunction: **atherosclerotic vessels** or calcified **cardiac valves**
- Increased uptake of calcium into mitochondria is characteristic of injured cells

Hyaline infiltration

- Characteristic alteration within cells or extracellular space
- Appears as **homogeneous, glassy, pink inclusion** on stained histologic section
- Different mechanisms responsible for its formation - no one pattern of accumulation
 - Intracellular: excessive protein, immunoglobulin aggregates, viral nucleoproteins,
 - Extracellular: precipitated plasma proteins, other cell proteins
 - Common around arterioles and renal glomeruli
 - Variety of mechanisms - implication varies with process